

NON-WIRES SOLUTIONS ROUND TABLE MEETING

Jan. 22, 2004

Recap from previous day

Diane Adams

Puget Sound Energy DSM Analysis (Kitsap Peninsula)

Bill Hopkins and Sue McLain

Pilot Programs

Olympic Peninsula – Brad Miller

TBL Demand Reduction Pilot Olympic Peninsula

- Five Customers for 30+ MWs
- Pilot will run through March
- \$10,000 Licensing Fees
- \$15,000 Administrative Costs
- \$/MW is negotiable

DR Pilot Tests

Four Planned Events for each Facility

- 1. Fire Drill Test: Initial Offering will be for \$0.00
- 2. Mid-week One-Hour offering for Full Reduction
- 3. Weekend Offering for One-Hour+ Monday Morning Reduction
- 4. Weather Dependent Full Offering

Offers to Generators will be coordinated with planned facility maintenance tests as much as possible 6

TBL Load Forecast for 2005

J04EHCY2F is the final basecase made in 2002 with forecasted system for 2004 for extreme winter (-15C on Peninsula).

J04CY2F is the final basecase made in 2002 with forecasted system for 2004 for normal winter (-5C on Peninsula).

J05D28 is a basecase which is still being worked on and **HAS NOT BEEN APPROVED** with forecasted system for 2005 for normal winter (-5C on Peninsula).

Pilot Programs

Olympic Peninsula Celerity – Mike Hoffman

Upper Olympic Peninsula Non-Wires Solutions Project

- •Celerity Energy is an Oregon corporation providing energy solutions from a variety of distributed energy resources that provide value to **both** energy suppliers and end-users.
- •Celerity Energy seeks "best" technology applications to create aggregated networked resources.
- Create networks of demand response and distributed generation resources
- •Create, manage and control networks of resources through an internet-based communications & applications platform

Current Projects

- The Beta Project
- Financed by Caterpillar Power Systems
- Power Marketing Agreement w/ PNM
- 25 MW project; Initial phase operational 4 sites, 10 gen-sets 4 gas, 5 diesel & 1 dual fuel

STATE OF CALIFORNIA

CONSUMER POWER AND CONSERVATION FINANCING AUTHORITY

- Aggregate 10 to 15 MW of load shedding capability
- Nominate loads for ISO markets
- Customers include hospitals and California State University System
- Dual Fuel Demonstration operational2 sites, 3 gen-sets
- Power Purchase Agreement (PPA)

Upper Peninsula Project

Highlights:

- Create an operable network of dispatchable DG resources
- Aggregate up to 5 MWs
- Primarily use customer-owned standby generation.
- Alternative fuels (bio-diesel, natural gas), Oxidation catalyst, and limited operating hours for environmental mitigation
- Focus on Clallam Co. PUD, Mason Co. PUD No. 3, City of Port Angeles service areas

Action Steps

- Meet with Bonneville regional Account Reps & Utilities
- •Make contact with customers & determine environmental compliance
- Determine control and information as well as equipment upgrade needs
- •Create cost estimates for each site Rank Sites (\$/kW environment options)
- Execute commercial arrangements with end-users
- Interconnection (physical and communications) of selected assets
- •Manage installation and operation of assets long term maintenance of assets

Pilot Programs

Idaho – Paul Kjellander

Pilot Programs

Principles, Knowledge Needs, Selection Criteria, and Status – David Le

2005-2006 Pilots – Mike Weedall

Principles:

- Replicable and applicable pilot projects
- Willingness to contribute to project costs will drive the location of many projects
- Projects should be fundamentally oriented to prove reliability within the electric transmission context

Technical Knowledge needs:

- Energy efficiency impact on peak use
- Cost and effectiveness of direct load control
- Lead and response times needed and available
- Environmental mitigation options, costs, and effects for distributed generation options.
- Reliability of NWS alternatives to traditional transmission solutions using BPA reliability standards.

Experiential:

- Strategic energy efficiency demonstrates both base and peak benefits.
- Implementation challenges of advanced commercial sector load dispatch aggregation.
- Demonstrate methods of aggregating various load control and load dispatch techniques and their effects on peak load at distribution and transmission system peaks.

Institutional:

- Clarify actual distribution level benefits of various direct load control strategies such as direct-load-control-only vs. direct-load-control as part of automated meter reading and other utility management strategies.
- Develop internal BPA processes that allow for rapid and effective implementation of Non-Wires Solutions

Pilot Selection Criteria:

- Contributes to a critical knowledge need or to a broad set of knowledge needs.
- Cost share contribution from project partners is available.
- Designed to be replicable, or directly applicable to a non-wires transmission opportunity.
- Relevant institutions involved.

Pilots:

- Underway
 - Olympic Peninsula Demand Exchange
 - Celerity Distributed Generation Aggregation
 - Ashland Load Dispatch Aggregation
- 2004 Options
 - Solicitation for New Pilots issued during 2004 for 2005
 & 2006
 - Study of bio-diesel fuel for back-up generation
 - Irrigation Load Management
 - Peak Shaving in Richland Public Buildings
 - Transactive Controls in Commercial Offices
 - Micro-Turbine at Pacific Northwest Laboratory

Presentation from "Persistence of Measures" Subcommittee

Tom Foley

Presentation from "Price Signals" Subcommittee

Ken Corum

Comparing Energy Transmission via Natural Gas Pipelines and Electric Wires Joint Study by Northwest Gas Association and BPA

Shep Buchanan

Economics of Pipes and Wires

- Study looks at costs of energy delivery via natural gas pipelines versus electric transmission lines
- Jointly sponsored and conducted by BPA and Northwest Gas Association (NGA)
- How do costs compare and do FERC pricing policies result in inefficient outcomes?

Bonneville								
		MA	Table 1 Cost Comparison					
Powe	r Administration	- (XXI)						
137	Transmission Cost	S F W W			Pipeline Costs			
V								
Capital cost per mile (new stations)		\$1,865,500		Capital cost per mile (new stations)			\$1,000,000	
Capital Cost for 100 miles (new stations)			\$186,550,000	Capital Cost for 100 miles (new stations)			\$100,000,000	
Operation and Maintenance Costs per year			\$519,000	Operation and Maintenance Costs per year				\$1,000,000
Annual P	ayment, 30 years	1500 MW	New Stations	Annual P	ayment, 30 years		1500 MW	New Stations
Miles	7%		12%	Miles		7%	8.75%	12%
100	\$15,033,393.57		\$23,158,999.32	100		\$8,058,640.35	\$9,518,589.85	\$12,414,365.76
O & M Costs	\$519,000		\$519,000	O & M Costs		\$1,000,000	\$1,000,000	\$1,000,000
Total Costs per year	\$15,552,394		\$23,677,999	Total Costs per year		\$9,058,640	\$10,518,590	\$13,414,366
Cost Per kW-Yr	\$10.37		\$15.79	Cost Per kW-Yr		\$6.04	\$7.01	\$8.94
BPA Transmission Rate	\$12.16		\$12.16	BPA Transmission Rate		\$12.16	\$12.16	\$12.16
Cost per MWh				Cost per MWh				
(100% LF)	\$1.18		\$1.80	(100% LF)		\$0.69	\$0.80	\$1.02
Cost per MWh				Cost per MWh				
(65% LF)	\$1.82		\$2.77	(65% LF)		\$1.06	\$1.23	\$1.57

Bonneville

Conclusions

- Pipes are cheaper than wires. Site- and case-specific factors can change that.
- FERC's pricing policies treat them consistently. However, physical differences can make them appear different.
- Merchant electrical transmission is unlikely to follow the gas pipeline model. Participant funding will need greater certainty of economic gain.
- The Region would benefit from integrated energy planning. Infrastructure costs could be reduced.

Adjourn